MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9701 CHEMISTRY

9701/34
Paper 3 (Advanced Practical Skills), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	34

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	34

(b)	ACE Interpretation	Calculates the mean, correct to 2 decimal places (third decimal place rounded to the nearest $0.05 \mathrm{~cm}^{3}$) from any accurate titres within $0.20 \mathrm{~cm}^{3}$. A mean of exactly .x25 or .x75 is allowed but the candidate may round up or down to the nearest 0.05 cm^{3}. If ALL burette readings are given to 1 decimal place then the mean can be given to 1 decimal place if numerically correct without rounding. Mean of 24.3 and $24.4=24.35(\sqrt{\prime})$ Mean of 24.3 and $24.4=24.4(x)$ Titres to be used in calculating the mean must be clearly shown - in an expression or ticked in the titration table.	1	[1]
(c)	ACE Interpretation	No additional factor/expression is allowed in any step If an answer, with no working, is given in any section allow if correct. I Uses ${ }^{2.00} / 158.0$ in step (i) and answer (i) \times cand titre $/ 1000$ in step (ii)	1	
	PDO Display	```II Uses answer (ii) × 5 in step (iii) and answer (iii) * 1000/25 in step (iv)```	1	
		III Uses answer (iv) $\times 151.9$ in step (v), and answer (v) $\times 100 / 21.50$ in step (vi)	1	
		IV Appropriate working shown in a minimum of four sections.	1	
		V 3 to 5 significant figures in final answers to all sections attempted - minimum of four final answers required	1	[5]
	[Total: 13]			

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	34

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	34

(c)	ACE Improvements	(i) No mass change with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (on heating). (ii) Evidence for no gas produced, e.g.: limewater unaffected, no gas collected in a gas syringe If there is reference to measuring mass and to measuring volume but the absence of change is not mentioned, award one of the two marks available.	1 1	[2]
(d)	ACE Interpretation	Max errors of $0.05,0.005$ and 0.0005 respectively for balances A, B and C. Calculates: 1.11\% error for balance A 0.25% error for balance B 0.20% error for balance C Allow ecf on \% errors only if: (i) Max errors given are 0.1, 0.01 and 0.001 respectively for balances A, B and C and $\%$ errors are $2.22 \%, 0.50 \%$ and 0.40% (ii) All max errors are incorrect by a factor 10 e.g. 0. 5, 0.05 and 0.005. $\%$ errors are $11.1 \%, 2.5 \%$ and 2.0%	1	[2]
	[Total: 12]			

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	34

FB 4 is $\mathrm{MnSO}_{4}(\mathrm{aq})$; FB 5 is $\mathrm{MgSO}_{4}(\mathrm{aq})$; FB 6 is $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq}) ; ~ \mathrm{FB} 7$ is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$				
3 (a)	MMO Collection	Give one mark for each of the following: I for FB 4 - tests (i) and (iv) II for FB 5 - tests (i) and (iv) III for FB 6 - tests (i) and (iv) IV for FB 7 - tests (i), (iii) and (iv) V Give one mark for any change/darkening of the initial precipitate in test (ii) for FB 4 to a qualified brown. The darkening may be described in test (i) or in test (iv) VI Describes the test on gas for ammonia in test (iii) for any solution that has no precipitate in either part test of (i) and is warmed. The test for ammonia is expected with FB 7 Do not award (VI) if the test is carried out with a solution in which a precipitate had formed at any stage or If a solution in which no precipitate is formed is not	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	

Results required with $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{NH}_{3}(\mathrm{aq})$ for the award of marks I to IV in 3(a)

test		observations			
		FB 4	FB 5	FB 6	FB 7
(i)	addition of NaOH	off-white, pale brown, buff or beige precipitate Do not accept cream or equivalent colour precipitates	white precipitate	white precipitate	No precipitate or no change Do not accept clear on its own as an observation; clear solution is acceptable
	further addition of NaOH	precipitate insoluble	precipitate insoluble	precipitate soluble	no precipitate or no change (may be left blank)
(iii)	warming solution with NaOH				any reference to a gas being evolved or reference to red litmus turning blue
(iv)	addition of NH_{3}	as NaOH	as NaOH	as NaOH	as NaOH
	further addition of NH_{3}	as NaOH	as NaOH	precipitate insoluble	as NaOH

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	34

(b)	ACE Conclusions	Do not accept any ion other than $\mathbf{M n}^{\mathbf{2 +}}, \mathbf{M g}^{\mathbf{2 +}}$, Al^{3+} or $\mathrm{NH}_{4}{ }^{+}$in any section. Marks I to III lons must be correct, including charge, if a symbol has been given. - no ecf in this section. Award I only if one ion only is identified from correct observations. Award I and II if two ions only are identified from correct observations. Award I, II and III if all four cations are identified from correct observations. The $4^{\text {th }}$ cation may be identified by elimination from incomplete supporting evidence. A deduction of Mn^{2+} is allowed from a cream ppt with $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{NH}_{3}(\mathrm{aq})$ IV Award this mark if the supporting evidence fits the ion identified and the practical performed for at least three of the four ions Allow ecf on ion order for mark IV. $\left(\mathrm{Mg}^{2+}\right.$ and Al^{3+} are most likely to be interchanged depending on "solubility in excess" observations.	1 1 1 1	[4]

Minimum evidence required in observations for the ion identity marks I, II and III.
In some cases, identification may be allowed from incomplete observations. There must, however, be no observations that are contrary to those expected with any "correctly" identified ion.

The same criteria will be applied to "candidate's supporting evidence in awarding mark IV. Candidates are not permitted to introduce (from the Qualitative Analysis Notes) supporting evidence that is not given in the observations.

Mn^{2+}	off-white precipitate with each reagent, or off-white precipitate turning brown with either of the reagents identification of the ion is allowed from an incorrect observation of a cream or yellow-white precipitate - one ion is known to be Mn^{2+}
Mg^{2+}	white precipitate, insoluble in (excess) NaOH
Al^{3+}	white precipitate, soluble in (excess) NaOH
NH_{4}^{+}	no precipitate/no change with either reagent or ammonia, alkaline gas or gas turning red litmus blue evolved

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	34

(c)	MMO Collection	Records no precipitate/no reaction with each of the reagents.	1	[1]
(d)	ACE Conclusions	States that $\mathrm{Pb}^{2+} /$ lead(II) would give similar results. Award this mark providing there are no contrary observations for the solution identified as containing Al^{3+}	1	
(e)	MMO Collection	Records a white ppt in (i) Records a yellow precipitate or precipitate turning yellow in (ii).	1	1
(f)	ACE Conclusions	Award one mark for any attempt to describe replacement of Clby I in the ppt.	1	[1]
		[Total: 15]		

